on continuous cohomology of locally compact abelian groups and bilinear maps
Authors
abstract
let $a$ be an abelian topological group and $b$ a trivial topological $a$-module. in this paper we define the second bilinear cohomology with a trivial coefficient. we show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. also we show that in the category of locally compact abelian groups a central extension with a continuous section can be embedded in the second bilinear cohomology.
similar resources
On continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
full textOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
full textBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
full textPseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
full textbracket products on locally compact abelian groups
we define a new function-valued inner product on l2(g), called ?-bracket product, where g is a locally compact abelian group and ? is a topological isomorphism on g. we investigate the notion of ?-orthogonality, bessel's inequality and ?-orthonormal bases with respect to this inner product on l2(g).
full texton component extensions locally compact abelian groups
let $pounds$ be the category of locally compact abelian groups and $a,cin pounds$. in this paper, we define component extensions of $a$ by $c$ and show that the set of all component extensions of $a$ by $c$ forms a subgroup of $ext(c,a)$ whenever $a$ is a connected group. we establish conditions under which the component extensions split and determine lca groups which are component projective. ...
full textMy Resources
Save resource for easier access later
Journal title:
journal of algebra and related topicsPublisher: university of guilan
ISSN 2345-3931
volume 1
issue 1 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023